A Human-Like Semantic Cognition Network for Aspect-Level Sentiment Classification
نویسندگان
چکیده
منابع مشابه
Aspect Level Sentiment Classification with Deep Memory Network
We introduce a deep memory network for aspect level sentiment classification. Unlike feature-based SVM and sequential neural models such as LSTM, this approach explicitly captures the importance of each context word when inferring the sentiment polarity of an aspect. Such importance degree and text representation are calculated with multiple computational layers, each of which is a neural atten...
متن کاملSentiment Analysis using Aspect Level Classification
The natural language text is analyzed by using sentiment analysis and classified into positive, negative or neutral based on the human emotions, sentiments, opinions expressed in the text. The user reviews and comments on movies on the web are increasing day by day. And to make a decision in movie planning, these reviews are useful for other users. To perform manual analysis of a huge number of...
متن کاملAttention-based LSTM for Aspect-level Sentiment Classification
Aspect-level sentiment classification is a finegrained task in sentiment analysis. Since it provides more complete and in-depth results, aspect-level sentiment analysis has received much attention these years. In this paper, we reveal that the sentiment polarity of a sentence is not only determined by the content but is also highly related to the concerned aspect. For instance, “The appetizers ...
متن کاملInteractive Attention Networks for Aspect-Level Sentiment Classification
Aspect-level sentiment classification aims at identifying the sentiment polarity of specific target in its context. Previous approaches have realized the importance of targets in sentiment classification and developed various methods with the goal of precisely modeling their contexts via generating target-specific representations. However, these studies always ignore the separate modeling of ta...
متن کاملDocument-Level Multi-Aspect Sentiment Classification as Machine Comprehension
Document-level multi-aspect sentiment classification is an important task for customer relation management. In this paper, we model the task as a machine comprehension problem where pseudo questionanswer pairs are constructed by a small number of aspect-related keywords and aspect ratings. A hierarchical iterative attention model is introduced to build aspectspecific representations by frequent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the AAAI Conference on Artificial Intelligence
سال: 2019
ISSN: 2374-3468,2159-5399
DOI: 10.1609/aaai.v33i01.33016650